Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35742978

RESUMO

Pumpkin (Cucurbita moschata Duchesne ex Poir.) is a multipurpose cash crop rich in antioxidants, minerals, and vitamins; the seeds are also a good source of quality oils. However, pumpkin is susceptible to the fungus Podosphaera xanthii, an obligate biotrophic pathogen, which usually causes powdery mildew (PM) on both sides of the leaves and reduces photosynthesis. The fruits of infected plants are often smaller than usual and unpalatable. This study identified a novel gene that involves PM resistance in pumpkins through a genome-wide association study (GWAS). The allelic variation identified in the CmoCh3G009850 gene encoding for AP2-like ethylene-responsive transcription factor (CmoAP2/ERF) was proven to be involved in PM resistance. Validation of the GWAS data revealed six single nucleotide polymorphism (SNP) variations in the CmoAP2/ERF coding sequence between the resistant (IT 274039 [PMR]) and the susceptible (IT 278592 [PMS]). A polymorphic marker (dCAPS) was developed based on the allelic diversity to differentiate these two haplotypes. Genetic analysis in the segregating population derived from PMS and PMR parents provided evidence for an incomplete dominant gene-mediated PM resistance. Further, the qRT-PCR assay validated the elevated expression of CmoAP2/ERF during PM infection in the PMR compared with PMS. These results highlighted the pivotal role of CmoAP2/ERF in conferring resistance to PM and identifies it as a valuable molecular entity for breeding resistant pumpkin cultivars.


Assuntos
Cucurbita , Cucurbita/genética , Erysiphe , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
2.
Front Plant Sci ; 12: 802864, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003192

RESUMO

The cucumber is a major vegetable crop around the world. Fruit flesh color is an important quality trait in cucumber and flesh color mainly depends on the relative content of ß-carotene in the fruits. The ß-carotene serves as a precursor of vitamin A, which has dietary benefits for human health. Cucumbers with orange flesh contain a higher amount of ß-carotene than white fruit flesh. Therefore, development of orange-fleshed cucumber varieties is gaining attention for improved nutritional benefits. In this study, we performed genotyping-by-sequencing (GBS) based on genetic mapping and whole-genome sequencing to identify the orange endocarp color gene in the cucumber breeding line, CS-B. Genetic mapping, genetic sequencing, and genetic segregation analyses showed that a single recessive gene (CsaV3_6G040750) encodes a chaperone DnaJ protein (DnaJ) protein at the Cucumis sativus(CsOr) locus was responsible for the orange endocarp phenotype in the CS-B line. The Or gene harbored point mutations T13G and T17C in the first exon of the coding region, resulting in serine to alanine at position 13 and isoleucine to threonine at position 17, respectively. CS-B line displayed increased ß-carotene content in the endocarp tissue, corresponding to elevated expression of CsOr gene at fruit developmental stages. Identifying novel missense mutations in the CsOr gene could provide new insights into the role of Or mechanism of action for orange fruit flesh in cucumber and serve as a valuable resource for developing ß-carotene-rich cucumbers varieties with increased nutritional benefits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...